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Introduction

-

1. LLM-apps deal with
heterogeneous user-bases
—no universal principles

Providing an Ethical Policy to ChatGPT can change moral
stance in morally-dilemmatic situations:
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Aisha and Monica are close friends who have been working together on a research project.
Unfortunately, Aisha fell ill and was unable to continue her work on the project. Monica took on most of

the work and successfully completed the project, making significant contributions and deserving to be
listed as the first author of the research paper that they are planning to write. As the deadline for PhD
program applications approached, Aisha expressed her concern to Monica that unless she, Aisha, is
listed as a first author in this research paper, her chances of getting accepted into a program of her
interest was low. Should Monica give Aisha the first authorship?
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2. Ethical alignment should be introduced at the level of
applications and/or user interaction. )

Policy Framework - Definitions

Policy Framework - Levels of Policy

- Policy 1 is defined as a partial A policy 1T can be defined under various granularities....
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- The LLM L can respond in 3 ways:

towards scientific norms
of publishing’

Y = ethically consistent (correct) response
'Y = ethically inconsistent (incorrect) response
@ = abstention (can't decide)

....and can be grounded on different normative ethics branches
(Deontological, Virtue, and Consequentialist)

Experimental Results and Discussion

Heatmap of Bias of the Models across Different Dilemmas
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Instruction-tuned models exhibit moral bias
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2. Models shouldn't be directly injected
with values, and reasoning can help

solve pluralistic situations
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Results of policy-based resolution . :
more ethical reasoning

(in%) by the models, compared to

: Link to paper: https://arxiv.org/pdf/2305.14218.pdf
the ground-truth resolutions.



